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Deep learning of experimental electrochemistry
for battery cathodes across diverse compositions

Peichen Zhong,1,2,* Bowen Deng,1,2 Tanjin He,1,2 Zhengyan Lun,1,3 and Gerbrand Ceder1,2,4,*
CONTEXT & SCALE

Artificial intelligence (AI) has

emerged as a tool for discovering

and optimizing novel battery

materials. Most machine learning

approaches predicting battery

performance have been focused

on predictions for a specific

chemistry or limited chemical

space of commercialized

cathodes due to the complexity of

optimizing multiple performance

properties simultaneously. Recent

studies in computational material

science have demonstrated the

feasibility of building universal

models for atomistic modeling by

harnessing more than 10 years of

ab initio calculations spanning the

periodic table. It becomes a

logical extension to envision

universal models for the

experimental discovery of battery

materials. We present a machine

learning model that uses an end-

to-end training pipeline to encode

and learn the (electro)chemical

information from experimental

voltage profiles. Our approach

offers a data-driven solution to

facilitate the rapid identification of

novel cathode materials.
SUMMARY

Artificial intelligence (AI) has emerged as a tool for discovering and
optimizing novel battery materials. However, the adoption of AI in
battery cathode representation and discovery is still limited due
to the complexity of optimizing multiple performance properties
and the scarcity of high-fidelity data. We present a machine learning
model (DRXNet) for battery informatics and demonstrate the appli-
cation in the discovery and optimization of disordered rocksalt
(DRX) cathode materials. We have compiled the electrochemistry
data of DRX cathodes over the past 5 years, resulting in a dataset
of more than 19,000 discharge voltage profiles on diverse chemis-
tries spanning 14 different metal species. Learning from this exten-
sive dataset, our DRXNet model can capture critical features in the
cycling curves of DRX cathodes under various conditions. Our
approach offers a data-driven solution to facilitate the rapid identi-
fication of novel cathode materials, accelerating the development
of next-generation batteries for carbon neutralization.

INTRODUCTION

The pursuit of carbon neutrality has become a global imperative in the face of

climate change, driving the transition to renewable energy sources and the wide-

spread adoption of electric vehicles.1–3 High-performance battery cathodematerials

with large energy density, high-rate performance, and long cycle life are central to

these advancements. The development of new cathode materials is essential for

meeting the increasing demand for energy storage and advancing the electrification

of transportation systems.4

Artificial intelligence (AI) has emerged as a potential tool in the discovery and opti-

mization of novel battery materials.5,6 By leveraging vast amounts of experimental

and computational data, AI-assisted techniques can accelerate the design and syn-

thesis of battery materials by identifying promising candidates within large chem-

ical spaces,7–9 uncovering hidden structure-property relationships via machine-

learned atomistic modeling,10 predicting the remaining lifespan of batteries,11–15

and optimizing protocols for fast charge/discharge protocol.16 These efforts signif-

icantly reduce the time and cost required for conventional trial-and-error ap-

proaches. Most recently, a battery data genome initiative has been proposed to

use AI assistance to accelerate the discovery and optimization of battery

materials.17

Despite these advancements, current machine learning efforts in battery research

primarily focus on predicting the lifespan for a simple chemistry or within a limited

chemical space, such as Ni-Mn-Co (NMC) or LiFePO4 (LFP). The development of

exploratory machine learning for representing comprehensive compositional effects
Joule 8, 1–18, June 19, 2024 ª 2024 Elsevier Inc. All rights reserved. 1
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Figure 1. Discharge voltage profiles from experiments

(A) The discharge voltage profile illustrates the relationship between capacityQ and voltage V, which is conditioned on the composition of the cathode

material.

(B) The derivative quantity dQ=dV is used to quantify the redox potentials of the TM.

(C and D) The experimental discharge voltage profiles of Li1.2Mn0.2Cr0.2Ti0.4O2.0 DRX with (C) multi-rate tests from 20 to 1,000 mA/g and (D) multi-cycle

tests from the 1st to the 30th cycle.

(E) The parsed discharge profile is stored in a voltage array fVN
i g and a capacity array fQN

i g, where the subscript i represents a point (state) on a

discharge profile, and the superscript N represents the cycle number.
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in a multi-dimensional chemical space remains underdeveloped due to the chal-

lenges associated with simultaneously optimizing multiple electrochemical proper-

ties (e.g., rate capability, cyclability, and various test voltage windows).18 Moreover,

the scarcity of high-fidelity data further hinders the progress of AI in the battery field.

Disordered rocksalt (DRX) materials have emerged as promising cathode materials

that make use of earth-abundant precursors to enable scaling of Li-ion energy

storage to several TWh/year production.19 Owing to the nearly unlimited composi-

tional design space and considerably more complex structure-property relationship

of DRX cathodes, compared with conventional layered cathodes (Figure 1A), their

rational design requires the extensive involvement of advanced characterization

techniques (e.g., pair-distribution function analysis,20 spherical-aberration-cor-

rected transmission electron microscopy,21 and solid-state nuclear magnetic reso-

nance spectroscopy22) as well as sophisticated computational tools (e.g., high-

dimensional cluster expansion and Monte Carlo simulation23,24). Data-driven

methods offer alternative means of compositional design and optimization of mate-

rials without having to fully construct their structure-property relationships.

In light of these challenges, we developed DRXNet, an exploratory machine learning

model for the discovery and optimization of battery cathodematerials. DRXNet uses

composition, test current density, working voltage window, and cycle number as in-

puts to predict entire discharge voltage profiles. By training and testing over 19,000

experimental discharge voltage profiles of DRX materials comprising various metal

species, we show that the model accurately captures the cathode electrochemistry

under different test conditions. Notably, DRXNet captures accessible discharge ca-

pacity in diverse Li-Mn-O-F compositions and makes rational predictions for several

high-entropy (HE) systems. As a universal model trained on diverse chemistries,
2 Joule 8, 1–18, June 19, 2024
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DRXNet offers a data-driven solution to facilitate the rapid identification of novel

cathode materials with improved energy-storage capabilities.

RESULTS

Parsing discharge profiles

Unlike conventional NMC-based layered cathodes,25,26 DRX materials exhibit more

diverse electrochemical behavior due to the significantly larger chemical space over

which they can exist and their more subtle structure involving various forms of cation

short-range order (SRO).27 A prototype DRX cathode (Li1+x M0
aM00

bO2�y Fy) is

composed of three primary compositional parameters: (1) the redox-active species

M0; (2) the inert high-valent transition metal M00, which charge-compensates for the

lithium (Li) excess and stabilizes disordered structures28; and (3) fluorine, which en-

hances the cyclability and accommodates more Li excess without losing transition

metal (TM) redox by reducing the anion valence.29 In addition, other compositional

modifications are often made to enhance capacity, rate, or cyclability. For instance,

Mg doping in Mn-based oxyfluoride DRX can increase the discharge capacity while

retaining a similar voltage-profile shape30; Cr doping in Li1.2 Mn0.4 Ti0.4 O0.2 results

in a comparable low-rate capacity but significantly improves the high-rate perfor-

mance near the top of charge.31 These non-linear effects arising from compositional

changes make both material design and machine learning modeling challenging,

thereby necessitating a comprehensive, high-fidelity dataset to address such issues.

Figure 1A introduces the typical discharge voltage profile in battery tests. The pro-

file shape is tied to various factors, such as the DRX composition, applied current

density rate, and degradation that may have occurred in prior cycles. Figures 1C

and 1D show the multi-rate tests (the first cycle) and multi-cycle tests (of 20 and

1,000 mA/g) of the Li1.2Mn0.2Cr0.2Ti0.4O0.2 cathode as an example. The capacity Q

is measured in experiments by determining the cumulative charge transferred in a

galvanostatic test. Taking the derivative of Q with respect to V, the dQ=dV value

can be evaluated for a given voltage profile, which is a crucial physical quantity for

analyzing characteristic redox potentials from different TMs.32

DRX battery TD

We have compiled the electrochemical test data related to DRX compounds by min-

ing electronic experimental notebooks in our research group over the past 5 years to

construct the DRX test dataset (DRX-TD). The dataset contains not only results on

successful materials published in several papers27,30,31,33–38 but also data on less

well-performing DRX compounds. This endeavor yielded a comprehensive dataset

containing 19,000 discharge profiles across 16 different elements (14 metal

species + O and F) from lab experiments and published literature (see experimental

procedures). An individual electrochemical test is defined as a group of Ncycle

discharge profiles with a fixed current density rate, where Ncycle is the number of cy-

cles conducted in such a test, corresponding to the results obtained from one coin

cell. The distribution of elements in the DRX-TD is shown in Figure 2A, where the

number in each element’s box represents the number of compounds with that

element present for which an electrochemical test is present. The box’s color indi-

cates the total number of discharge profiles for compounds containing that element.

Comprising 7,898 discharge profiles of DRX oxides and 11,604 discharge profiles of

oxyfluorides, the dataset offers extensive coverage of major redox-active TMs. Fig-

ure 2B displays histograms for the number of cycles, Ncycle, and the current rates at

which experiments were performed. As is typical for exploratory research programs

in a research laboratory, most of the electrochemical tests were conducted at a low

current rate (20 mA/g) and for 10–100 cycles.
Joule 8, 1–18, June 19, 2024 3
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Figure 2. Description of the collected experimental dataset and model design

(A) The elemental distribution of collected experimental electrochemistry data. The dataset

contains 7,898 discharge profiles collected from DRX oxides and 11,604 discharge profiles from

oxyfluorides. The color-coding of the boxes indicates the number of discharge profiles (cycles) on

compounds that contain that specific element. The number within each elemental box represents

the number of compounds with that element on which experiments were conducted.

(B) A histogram of the number of cycles (Ncycle) and current density (rate) for all the individual

electrochemical tests.

(C) An end-to-end pipeline that mapsQi = FðVi jOÞ, which consists of the electrochemical condition

network O (left) and the state prediction network F (right). The electrochemical condition network

encodes the DRX composition, current density rate, and cycle information. The three encoded

vectors are synthesized through gated MLPs with soft attention to obtain the condition vector

X
!

O.
39 The state prediction is approximated as a forward deep neural network that takes the voltage

state Vi and cycling voltage window Vlow;Vhigh as inputs. The encoded condition vector X
!

O is

element-wise added in the hidden layer of F. The circled symbols are all element-wise operations.

The message-passing graph neural network (GNN) is used for compositional encoding of DRX,

adapted from the Roost model.40
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For each discharge profile, 100 points were uniformly sampled from the values of V

and Q, resulting in a voltage series V = ½V1;V2;.;Vi;.� and a capacity series Q =

½Q1;Q2;.;Qi;.�. The dQ=dV curve was then calculated by differentiatingQ with V .

As dQ=dV is a more intrinsic property for battery materials, including this value in the

modeling allows for a more representative analysis of the electrochemical perfor-

mance of DRX compounds under various conditions (see experimental procedures).

DRXNet architecture

DRXNet aims to draw a connection between chemistry and cathode performance by

establishing a mapping between V andQ for arbitrary cathode compositions under

various test conditions. This idea can be conceptualized as identifying a function F

that maps cathode parameters and the voltage state Vi to produce the capacity state

Qi as an output. The function F is conditionally defined by the parameters O, which

consider the electrode composition, current rate, and cycle number,
4 Joule 8, 1–18, June 19, 2024



Box 1. Algorithm: the workflow of DRXNet with an example of Li1:2Mn0:2Cr0:2Ti0:4O2

Condition inputs:

O =

8<
:

composition = Li1:2Mn0:2Cr0:2Ti0:4O2

rate= 20mA=g;
cycle= 1

Condition outputs:

X
!

O1 = X
!

comp + sf1

�
X
!

comp

����X!rate

�
$f1

�
X
!

comp

����X!rate

�

X
!

ON
= X
!

O1
+ sf2

�
X
!

O1

����X!cycle

�
$f2

�
X
!

O1

����X!cycle

�
$WnðN � 1Þ

Inputs: V = ½1:5;.;Vi ;.; 4:8�/N series

for i = 1 to N do

Compute Qi = FðVi

����X!ON Þ

end

Outputs: Q = ½Q1;.;Qi ;.;QN�

ll

Please cite this article in press as: Zhong et al., Deep learning of experimental electrochemistry for battery cathodes across diverse compositions,
Joule (2024), https://doi.org/10.1016/j.joule.2024.03.010

Article
Qi = FðVijOÞ: (Equation 1)

We designed DRXNet with twomain components, as shown in Figure 2C: (1) an elec-

trochemical condition network that generates a feature vector X
!

O based on the

compound’s composition and electrochemical test information and (2) a state pre-

diction network to approximate the discharge state of the cathode as a function of

the voltage state, Qi = FðVijOÞ, given the electrochemical conditional encoding

of O. For instance, Box 1 demonstrates how DRXNet predicts the first-cycle

discharge profile of Li1:2Mn0:2Cr0:2Ti0:4O2 at a current rate of 20 mA/g between 1.5

and 4.8 V.

Initially, three condition inputs (composition, rate, and cycle) are encoded to

represent O. We use Representation Learning from Stoichiometry (Roost), a graph

neural network (GNN) model proposed by Goodall and Lee,40 for compositional

encoding. Roost takes elements as graph nodes and updates the correlation be-

tween elements through weighted message passing based on each element’s

fractional concentration. The nodes are initialized with elemental embedded

vectors h
!

s (s: species) from mat2vec to capture as much prior chemical information

as possible through text mining of previously published literature.41 Moreover,

we consider only the cation species as independent nodes in Roost, treating

the anion species information (fluorine) as a mean-field background, i.e.,

h
!0

Li = h
!

Li + cF$ h
!

F, where cF is the fractional concentration of fluorine, and h
!

Li=F

is the embedded vector of Li/F. Rate and cycle information is encoded using

multi-layer perceptrons (MLPs).

Because the rate and cycle properties are intrinsically affected by the composition, we

used gated MLPs with soft attention for electrochemical condition encoding via a hier-

archical network structure.39 The X
!

O1 = X
!

comp + sf1ðX
!

comp

����X!rateÞ$f1ðX!comp

����X!rateÞ is a
rate-informed feature vector, where sf and f represent MLPs with different activation

functions and k denotes the concatenation operation. In addition, the cycle-informed

vector X
!

ON = X
!

O1 + sf2ðX
!

O1

����X!cycleÞ$f2ðX!O1

����X!cycleÞ$WnðN � 1Þ is linearly dependent

on the cycle number with a trainable weightWn. Thus, the feature vector X
!

O1 is used to

represent the 1st cycle, and X
!

ON is used to represent the N-th cycle, respectively.
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Last, we used several MLPs to construct the state prediction network F, as shown in

Figure 2C. F takes the voltage state Vi and working window Vlow;Vhigh as inputs, and

the X
!

O is element-wise added to the hidden layer of F to inform F of conditions O

(see experimental procedures). The state prediction network F is thus constructed as

a simple function mapping from the voltage state Vi to the capacity Qi . In addition,

ðdQ=dVÞi is obtained by auto-differentiation of F.

Applicability domain

We explored the scope of DRXNet’s applicability in the realm of composition space.

Determination of the applicability domain in battery machine learning models can

be challenging due to the unavailability of sufficient test data, as generating new

data necessitates the synthesis of new materials or conducting battery cycling tests

for weeks to months.18,42 Simply separating the sequence of voltage and capacity

signals fVi;Qig into training and test sets can result in data leakage and a failure

to represent the expected error in real applications. To evaluate the expressibility

and generalization of DRXNet, we designed several experiments by partitioning

the dataset based on compositions. The electrochemical tests with no more than

two metal species (2TM, excluding Li) were designated as the training set, whereas

the tests with three metal species (3TM) and higher numbers of TM components (HE)

were assigned as test sets. For each test, an ensemble of five independent models

was trained to enhance the overall prediction accuracy and robustness and to quan-

tify the model variance. The average value is used for the prediction, and the stan-

dard deviation of the prediction from the ensemble of five DRXNet models (sQ) is

used to represent the model variance as an approximation of how uncertain the pre-

dictions are.

A rational design of battery cathodes typically focuses on the capacity that can be

delivered within a certain voltage window. Therefore, we used DRXNet to compute

the voltage profiles with electrochemical test parameters in the test set and

compared the delivered capacity between 2.0 and 4.4 V of experiments and predic-

tions within 50 cycles (see Figure 3). The voltage range of 2.0–4.4 V (vs. Li+/Li) is

reasonable for current electrolytes, and most commercialized cathodes such as

LFP, LiCoO2, and NMC operate within this voltage range. Our choice of this voltage

range for testing model performance is aligned with these industry norms. The

average voltages (V =
P

iViDQi=
P

iDQi ) between 2.0 and 4.4 V were subsequently

computed. As a baseline, the mean absolute deviation (MAD) of the average voltage

is 0.16/0.21 V for 3TM/HE, and theMAD of discharge capacity is 36.59/38.54 mAh/g

for 3TM/HE. Figures 3A and 3B demonstrate the performance of the DRXNetmodels

trained on the 2TM dataset and tested on the 3TM and HE datasets. Mean absolute

errors (MAEs) of 0.1/0.13 V for the average voltage and 23.38/29.97 mAh/g for the

capacity were obtained for the 3TM/HE TDs, respectively. It is found that large pre-

diction errors already occur for the first cycle and propagate into the subsequent cy-

cles. Notably, a systematic underestimation of capacity is observed for the HE com-

pounds (Figure 3B), which can be rationalized by the fact that 2TM compounds

cannot capture the improved performance arising from the novel high-entropy

physics.38,43

For practical applications, new data points can be continuously collected as exper-

iments progress, enabling on-the-fly training with incoming data to improve predic-

tive performance. To evaluate possible improvement with additional information

specific to the system being tested, we evaluated the improvement when DRXNet

is trained on a dataset containing all 2TM data and is provided with first-cycle

data from 3TM/HE materials. The knowledge of just first-cycle data results in a
6 Joule 8, 1–18, June 19, 2024
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Figure 3. Error and model variance analysis of DRXNet in compositional space

The prediction error of discharge capacity between 2.0 and 4.4 V (y axis) vs. cycle number (x axis).

The model variance is represented by sQ , a standard deviation of the ensemble of the models’

predictions, which is plotted as scaled colored dots.

(A and B) Predictions on 3TM/HE using models trained on the 2TM dataset.

(C and D) Predictions on 3TM/HE using models trained on both the 2TM dataset and the first cycles

of the 3TM/HE dataset.

(E and F) Predictions on 3TM/HE using models trained on the 2 + 3TM dataset.
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reduction of the mean capacity error from 23.38/29.97 to 14.84/17.58 mAh/g for

3TM/HE (Figures 3C and 3D). The enhanced performance achieved by explicitly

training with the first cycle indicates that themodel can better generalize cycling per-

formance, even when experiments for a specific composition are not extensively

sampled. This capability has the potential to significantly reduce the month-long

time frame typically required for electrochemical testing to identify whether a new

cathode material has a desired cyclability or rate capability. Training the model

with first-cycle data led to a substantial decrease in both the prediction error and

model variance for the initial few cycles, although the model variance increased sub-

sequently with the cycle number for untrained domains (Figures 3C and 3D).

To examine how data augmentation could improve the performance of DRXNet, we

further trained models on the 2 + 3TM dataset where chemical information, in addi-

tion to 2TM interactions, is included. Figures 3E and 3F display the predictions on

the 3TM (MAE: 6.0 mAh/g) and HE (MAE: 19.63 mAh/g) datasets. It is important

to note that the models trained on 2 + 3TM data show an error reduction of around

10 mAh/g for the HE capacity prediction, compared with the results obtained when
Joule 8, 1–18, June 19, 2024 7
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Figure 4. Illustration of predictions of dischare capacity in Li-Mn-O-F DRX systems

(A) Compositional design principle includes the optimization of Li-excess content, TM redox, and

Li-F short-range order (SRO).37

(B and C) Prediction of discharge capacity in the Li-Mn-O-F chemical space for the 1st (B) and 30th

(C) cycle between 1.5 and 4.8 V at a current density rate of 20 mA/g. The blue stars indicate the

compositions included in the training set.
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training the 2TMmodel (Figures 3B and 3F), along with a significant reduction on the

model variance. This finding suggests that the 2TMdataset is inadequate for extract-

ing relevant information and generalizing it to other compositions. The scaling to

electrode material with a high number of components necessitates capturing

more than 2TM correlations or interactions in training the GNN. Failure to do so

may lead to systematic prediction errors, as demonstrated in Figure 3B. When the

model is able to acquire sufficient chemical domain knowledge (e.g., 2 + 3TM-

model), it becomes feasible to extrapolate the electrochemical properties of high-

component electrodes, which is evidenced in Figure 3F with reduced prediction er-

ror as well as model variance, and only a few outlier experiments exhibit large errors.

Recover design principles in Li–Mn–O–F chemical space

We present several examples to illustrate how DRXNet learns the underlying cath-

ode chemistry and assists in designing new materials, where the models used for

these applications are pretrained on all discharge profiles. As an attractive earth-

abundant, non-precious TM, Mn is of considerable interest for designing next-gen-

eration cathode materials.33 Lun et al. proposed three primary design degrees of

freedom for Mn-based DRX (Figure 4A): (1) the Li-excess content, which controls

the presence of a percolating network facilitating Li diffusion; (2) the Mn content,

as achieving high capacity with a low amount of Mn requires a large amount of ox-

ygen redox, leading to poor cyclability; and (3) the fluorine content, which lowers

the total cation valence and provides greater freedom to optimize the Li andMn con-

tent.37 Fluorine modifies cation SRO through the strong Li-F attraction and lowers

the initial capacity,30,44 but it can increase stability at high voltage charging.21 These

principles are highly correlated and exert non-linear effects on performance.

We used DRXNet to predict the discharge capacity of DRX compounds between 1.5

and 4.8 V at a current rate of 20 mA/g for the 1st and 30th cycles. The results, as a

function of Li and F content, are shown in Figures 4B and 4C. The Mn content and

valence follow directly from the Li and F content. The effect of fluorine on perfor-

mance, extensively characterized experimentally, is well captured by our model: a
8 Joule 8, 1–18, June 19, 2024
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Figure 5. Predicted discharge voltage profiles of two high-entropy DRX materials

(A) Li1.2Mn0.1Mg0.1Cr0.3Ti0.2Nb0.1O1.8F0.2 (HE-1) and (B) Li1.2Mn0.1Mg0.1Cr0.15V0.15Ti0.2Nb0.1O1.8F0.2
(HE-2) with various current densities (from 20 to 1,000 mA/g) between voltage window of 1.5–4.8 V.

The inset displays the cycled discharge capacity at a current density of 20 mA/g. HE-2 with

various current densities (from 10 mA/g to 10 A/g) between voltage windows of (C) 2.0–4.4 V and (D)

2.0–4.0 V.
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higher F content (y in O2�y Fy) results in a lower discharge capacity for the 1st cycle

but a higher capacity for the 30th cycle, consistent with its documented role in pro-

moting surface stability.21 In particular, cation-disordered Li1.333Mn0.667O2 (bottom

right corner of Figure 4C) is predicted to have the highest capacity (>320mAh/g) for

the 1st cycle but the lowest capacity for the 30th cycle. In this compound, the valence

of Mn is 4+, and all capacity originates from oxygen. Such a large amount of O-redox

leads to rapid capacity fade consistent with the experimental observations on disor-

dered Li2MnO3 reported in Kataoka et al.45

To provide some context for the extrapolation capability of DRXNet, we have illus-

trated the compositions in the training dataset with blue stars in Figures 4B and 4C.

From this, it can be observed that even with a limited distribution of training points

on the composition map, DRXNet offers reasonably consistent predictions that

seem to be in line with the experimental observations beyond the training points.

As DRXNet is trained on various compositions beyond the Li-Mn-O-F chemical

space, the ability to extrapolate to other domains can be attributed to the transfer

learning from other F- and non-F-containing compounds. The example in this sec-

tion demonstrates how practitioners can generalize the design principles from a

data-driven perspective purely starting from the data mined from experiments.

Exploratory search for HE cathodes

HE DRXs are composed of many species and present a vast chemical space to

explore for battery materials discovery. We used DRXNet for virtual high-throughput

screening considering redox-compatible species from the bivalent (Mn2+, Fe2+,

Ni2+, Mg2+) and trivalent groups (Mn3+, Cr3+, V3+, Fe3+). Two case studies of pre-

dicted HE DRXs are presented: Li1.2Mn0.1Mg0.1Cr0.3Ti0.2Nb0.1O1.8F0.2 (HE-1) and

Li1.2Mn0.1Mg0.1Cr0.15V0.15Ti0.2Nb0.1O1.8F0.2 (HE-2). The discharge profiles
Joule 8, 1–18, June 19, 2024 9
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predicted with DRXNet under various current densities are shown in Figures 5A

and 5B. A more comprehensive collection of predictions for other compositions is

included in Figure S6.

For HE-1, DRXNet predicts a discharge capacity of 276 mAh/g at a current rate of

20 mA/g. The compound delivers its largest discharge capacity near 3 V and transi-

tions to a higher voltage slope below 3 V, a phenomenon that has been widely

observed in Mn redox- and/or Cr redox-based DRXs.31,38,46 HE-1 is predicted to

have an unusually high-rate capability for a DRX compound when discharging. A ca-

pacity of 196 mAh/g is estimated at 1,000 mA/g, which is 71% of the capacity at

20 mA/g. Previous work has demonstrated that multi-elemental substitution (i.e.,

HE strategy) frustrates the unfavorable SRO that leads to poor Li kinetics. In addition,

the incorporation of Cr and its migration as Cr6+ at high voltage create a more

extended 0-TM network for Li transport. Both these features improve the Li diffusion

kinetics.31,38 DRXNet clearly learns those benefits and extrapolates rationally into

electrochemistry prediction of the HE compositions.

As a comparison to HE-1, we formulated HE-2 with partial V3+ to Cr3+ substitution.

The change in the shape of the voltage profile, due to the low potential of V5+/V3+

reduction, is well captured by DRXNet as shown in Figure 5B and dQ=dV curves

in Figure S7. It is clearly demonstrated that with V3+ incorporation, a nearly con-

stant slope can be observed down to the low-voltage region, which

is characteristic for reported V-based DRX cathodes.47,48 Nevertheless, similar

to Cr6+, V5+ can migrate into the tetrahedral sites to enhance Li transport,

which benefits the rate capability.47 Consistently, with this concept, HE-2 is pre-

dicted to retrain 171 mAh/g capacity at 1,000 mA/g (64% of the 266 mAh/g capac-

ity at 20 mA/g), which is superior to the majority of the DRX cathodes reported

to date.

The inset plots in Figures 5A and 5B show the predicted discharge capacity of HE-1

and HE-2 for 20 cycles. The capacity drop in the first five cycles is predicted to slow

down upon further cycling. This result is in full agreement with experimental findings,

which indicate some of the irreversibility in the initial cycles, such as cathode-electro-

lyte interface formation.49 These examples illustrate how practitioners can effec-

tively use DRXNet to navigate the extensive chemical space of HE DRXs and identify

promising candidates for cathode design and optimization.

Electrochemical conditions

We further tested the depth and transferability of DRXNet’s predictive capabilities

by varying the HE-2 discharge voltage window and cycling rate, which are typical pa-

rameters varied in the investigation of a new cathode material. Figure 5C displays

the discharge profiles between 2.0 and 4.4 V, with two additional rates tested

(10 mA/g for a low rate and 104 mA/g for an extremely high rate). These conditions

are infrequently incorporated into our training data. The 10 mA/g exhibits a

discharge profile very similar to that obtained at 20 mA/g, which is entirely consis-

tent with typical experimental findings, as the discharge process at such a low rate

exhibits a reduced overpotential and is closer to the equilibrium. The 10 A/g-rate

discharge profile demonstrates a sharp drop in voltage, reasonably indicating

poor performance at this extremely high rate. Some unphysical predictions

start to appear when the model is tested to predict the discharge profiles between

2.0 and 4.0 V. As Figure 5D shows, a small non-zero offset � 6 mAh/g for the

20 mA/g-rate profile appears at the onset of discharge (4.0 V). Since the start of

the capacity curve at the upper level of the voltage cutoff is not formally enforced
10 Joule 8, 1–18, June 19, 2024
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to zero by themodel but emerges from the linear embeddings of the voltage state Vi

with the voltage window ½Vlow; Vhigh�, an offset can be created when there is not

enough data for that specific voltage window.

Based on the tests, our primary conclusion is that DRXNet exhibits a reasonable abil-

ity to learn the cathode material’s chemical information in the latent space and

generalize to test conditions that are included in the dataset. However, for test

conditions that the model has not or rarely encountered (e.g., experiments with

Vhigh <4:0 V), discrepancies or unphysical profiles may still arise. This highlights

the data scarcity issue, which is typical for human-generated experimental condi-

tions that are biased toward what is needed to demonstrate performance rather

than what is optimal for model training.50
DISCUSSION

Most machine learning approaches predicting battery performance have been

focused on predictions for a specific chemistry or limited chemical space of commer-

cialized cathodes, typically, the remaining useful life forecasted from the initial cy-

cles.11,51,52 However, the nature of battery cathode material discovery and optimi-

zation lies in a broad domain of chemistries, which is more challenging for AI as it

needs to capture the direct (e.g., voltage) and indirect effect (e.g., cycle life) of

chemical changes.18 Recent studies have demonstrated the feasibility of building

universal models for atomistic modeling by harnessing more than 10 years of ab ini-

tio calculations spanning the periodic table.10,53–56 It becomes a logical extension to

envision universal models for the experimental discovery of battery materials by

leveraging the wealth of both ab initio calculation and experimental data generated

on cathode materials worldwide.17,57 In this work, we propose an end-to-end

training pipeline to encode and learn the (electro)chemical information of cathode

materials from voltage profiles. Focused on DRX cathodes, we data mined years

of lab-generated experimental discharge voltage profiles and trained a universal

machine learning model (DRXNet) to make predictions across diverse compositions.

This was achieved through a novel model design consisting of an electrochemical

condition network O and a state prediction network F.

The design of the two networks promotes modularity in the architecture, streamlining

the optimization and interpretation of each network individually and their learned fea-

tures. For instance, composition is an intrinsic property of the synthesized cathodema-

terials, and the encoding of such features is independent of other factors such as cur-

rent density and cycle status, rationalizing our approach to first extract the

composition-only feature X
!

comp via a GNN. Although it remains a challenge that the

composition may change as a function of current density and cycle status due to TM

dissolution and the irreversible reaction of Li outside the cathode, DRXNet encom-

passes these factors into the rate- and cycle-informed feature vector representations.

By leveraging a ResNet-inspired architecture using skip connections,58 we achieve a

more effective synthesis of the feature vector within the latent space. This design allows

for a direct connection between the rate-informed feature, X
!

O1 , and the prediction of

the first-cycle capacity. Such architecture has been proven to boost model training and

alleviate the well-known gradient vanishing issues.

Given the inherent sequential nature of battery testing data—where possessing in-

formation from the N-th cycle implies the availability of data from the first cycle—it

becomes crucial to design features that reflect this causality. This insight leads to

the formulation of the cycle-informed feature, X
!

ON . This feature accentuates the
Joule 8, 1–18, June 19, 2024 11
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difference between the first and N-th cycles, guiding the prediction for the N-th-cy-

cle capacity, as detailed in Equation 6. Consequently, our loss function is con-

structed for multi-task learning with both terms for the first- and N-th-cycle capac-

ities, ensuring the causal relationships in cycle-dependent capacity predictions

(refer to Equation 12). Through an ablation study on whether to include the first-cycle

term, lðQ1Þ, in the loss function or not, we found that the model without lðQ1Þ tends
to be underfitted (more details in Figure S8). Our incorporation of loss terms for both

the first- and N-th-cycle capacities enhances the model expressibility, which is a

crucial factor in the optimization of battery materials.

In addition, the modular design of the electrochemical condition network ðOÞ provides
flexibility for the feature representationwhenexpanding themodel to includeother infor-

mation. The training dataset, derived from our own experimental results, does not

encompass testingparameters suchasparticle size, electrolyte type, synthesis variations,

etc.Since thebatteryelectrodeswere fabricated inour laboratoryusingstandardized rec-

ipes and methodologies, these factors have been coarsely integrated into the composi-

tional model and are treated as constants across our dataset. Currently, the model does

not include features to capture structural information (crystal structure, SRO, etc.). InDRX

compounds, SRO is known to influence performance, and to the extent that this is not a

direct consequence of composition but modified by synthesis parameters, its effects are

not accounted for.59 Inprinciple, researchers can choose to include such factors todesign

the electrochemical feature vector, dependingon the specific problem they are address-

ing.Given thevastamountandcomplexityof theseproperties, a syntheticdatacollection

approach is necessary. Data-mining techniques, such as text mining and figure mining,

can automatically retrieve valuable experimental information fromdecades of published

literature,60,61 although a challenge with aggregating diverse data from literature is the

numerous hidden and unspecified variables relevant to materials synthesis and electro-

chemical testing. Looking forward, autonomous labs can address both data scarcity

and transparency issues by enabling more extensive exploration of the experimental

space and even better collection of data from ‘‘failed’’ experiments.62–65

In conclusion, DRXNet represents a step forward in developing machine learning

models for battery materials research. By continuously refining the model and incor-

porating additional data and parameters, we anticipate that such a machine learning

framework will play an increasingly critical role in discovering and optimizing next-

generation battery materials.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the lead contact, Gerbrand Ceder (gceder@berkeley.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

The codes of DRXNet and the pretrained models are open-sourced at https://github.

com/zhongpc/DRXNet and https://doi.org/10.5281/zenodo.10719829. The open-

sourcedataset is available at https://doi.org/10.6084/m9.figshare.25328578.v1 for pub-

lic access, which contains 12,688 experimental discharge voltage profiles excluding the

Mn-rich and Ti-based DRX. The open-source dataset is not identical to but rather a part

of the DRX-TD that was used for the pretrained models in the paper.
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Data collection

We collected coin-cell electrochemical test data from our lab, starting in 2016, and

converted them into a digital format (.json). Each .json file contains information on

one individual electrochemical test, including the electrode composition, electrode

mass (g), active mass (g), test current rate (mA/g), low and high voltage value of the

working window (V), and charge/discharge profiles of Ncycle-collected cycles. The

compositions used for the model training were taken as the targeted composition

in experiments. For the fraction of our dataset that was previously published, the

composition values were typically confirmed by inductively coupled plasma (ICP)

analysis. For these compounds, the feature vectors of the targeted compositions

and ICP-analyzed composition exhibit R 99:7% in cosine similarity as shown in the

supplemental information, which supports using the targeted composition for the

general prediction purpose. Nonetheless, minor variations between the actual

composition and the target composition can be a source of noise in the data.

For the in-house battery tests, the CR2032 coin cells were assembled using commer-

cial 1 M LiPF6 in an ethylene carbonate and dimethyl carbonate solution (volume ra-

tio 1:1) as the electrolyte, glass microfiber filters (Whatman) as separators, and Li-

metal foil (FMC) as the anode. The coin cells were tested on an Arbin battery cycler

at room temperature. The cathode consisted of a mixture of active material (DRX),

Super C65 carbon black, and polytetrafluoroethylene (PTFE). The capacity signal,

collected in units of Ah from the Arbin battery cycler, was normalized tomAh/g using

the mass of the active material (active mass). The data from the failed tests (e.g., Ar-

bin cycler breakdown, electrolyte failure, strong signal fluctuations, etc.) were

removed from the dataset (see Figure S1 for examples).

To enhance the generalization and expressibility of DRXNet, we expanded the data-

set by figure mining published voltage profiles in related systems not covered by our

lab tests (see Table S1), which was accomplished using the WebPlotDigitizer.66 We

used the UnivariateSpline method to denoise and resample the experimental pro-

files and compute the dQ=dV curves. One hundred points were uniformly sampled

to form the voltage series V = ½V0;V1;.;Vi;.� for each discharge profile, and the

capacity series and dQ=dV series were calculated accordingly from V .

Model design

Preliminaries

A linear layer with trainable weight W and bias b is defined as

L
�
X
!�

= X
!
W +b: (Equation 2)

For simplicity of notion, each L represents different trainable weights in the following

equations.

Compositional encoding

For elemental information, each element is first embedded into a 200-dimensional

vector using mat2vec.41 The Roost model is used for compositional encoding,40

which is a GNN with message passings as follows:

h
!t+1

i = h
!t

i +
X
j;m

at;mi;j $sg+Lc

�
h
!t

i

���� h!t
j

�
;

at;mi;j =
wj exp

�
et;m
i;j

�
P

kwk exp
�
et;m
i;k

�;et;m
i;k = sg+La

�
h
!t

i

���� h!t
j

�
:

(Equation 3)
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In these equations, h
!t

i represents the t-th hidden layer for the i-th element; k de-

notes the concatenation operation; and the soft-attention coefficient at;mi;j describes

the interaction between elements i and j, withm as the index of multi-head attention.

Lc and La denote the linear layer for the core and attention layer, respectively.

The fractional concentration wj of element j depends on the specific compound

(e.g., wj = 0:6=0:1=0:1=0:2 for Li/Mn/Cr/Ti in Li1.2Mn0.2Cr0.2Ti0.4O2.0). sg is the SiLu

activation function. After n graph convolution layers, the encoded composition

vector X
!

comp is obtained by average pooling over the elements with weighted

attention:

X
!

comp = Pooling

2
664
wi exp

�
sg+La

�
h
!

n
i

��
P

k exp

�
sg+La

�
h
!

n
i

�� $

�
sg + Lc

�
h
!n

i

��3775 (Equation 4)

Electrochemical condition encoding

The electrochemical test primarily involves two pieces of information: the current

density rate and cycle number. We use MLPs to encode the rate and cycle number:

X
!

rate = sg + LðrateÞ; X!cycle = sg+LðcycleÞ: (Equation 5)

As the actual rate and cycle performance are strongly correlated with cathode mate-

rials, the relationship between the composition, rate, and cycle is synthesized using

gated MLPs with soft attention39:

X
!

O1
= X
!

comp + sf1

�
X
!

comp

����X!rate

�
$f1

�
X
!

comp

����X!rate

�

X
!

ON
= X
!

O1
+ sf2

�
X
!

O1

����X!cycle

�
$f2

�
X
!

O1

����X!cycle

�
$WnðN � 1Þ

(Equation 6)

where sf = ss+B+L is an MLP, ss is the Sigmoid activation function, and f = sg+ B+ L

is an MLP with SiLu activation function sg. The BatchNormalization layer B is added

before the activation function. In this equation, X
!

O1 is a feature vector jointly deter-

mined by the composition and rate information, which is used to predict the first-

cycle property. X
!

ON is a feature vector jointly determined by the composition,

rate, and cycle information, which is used to predict the N-th-cycle property.

The difference between X
!

O1 and X
!

ON is linearly dependent on the number of

cycles with a trainable weight Wn, allowing the model to learn cycle performance

contrastively.

State prediction network

The state prediction network (F) takes the inputs of voltage state (Vi ) and outputs the

discharge-capacity state (Qi ):

Qi = FðVijOÞ: (Equation 7)

In practice, the voltage profile is measured within the applied voltage window (Vlow;

Vhigh). To accommodate the voltage window in the discharge state prediction, the

first layer in F is encoded via an MLP:

Z
!0

i = L+sF+
�
L
	
Vlow;Vhigh



+ LðViÞ

�
; (Equation 8)

where sFð $Þ is the Softplus activation function. The test condition information is

element-wise added to the state-prediction network.58

Z
!N

i = sF+L

�
Z
!0

i + X
!

ON

�
(Equation 9)
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The state of capacity is obtained by

QN
i = sF + L+ sF+L

�
Z
!N

i

�
(Equation 10)

where QN
i is the capacity for the N-th cycle (including the first cycle). Because the

discharge capacity is always positive, sF is added to constrain the predicted capacity

to be positive and to accelerate the training process. dQ=dV for the redox potential

can be obtained via PyTorch auto-differentiation67:

dQ

dV

����
i

= AutoDiffðQi;ViÞ: (Equation 11)

Model training

The model is trained to minimize the sum of multi-task losses for the capacity of the

first cycle, the N-th cycle, and dQ=dV :

L = wQl
	
QN

i



+ wdQl

 
dQN

dVi

!
+ wQ1

l
	
Q1

i



+R: (Equation 12)

AMSE loss function is used for lðQN
i Þ and l

�
dQN

dVi

�
, whereas a MAE loss function is em-

ployed for the first cycle as a contrastive term lðQ1
i Þ. The weights for QN

i , dQ= dV ,

andQ1
i are set towQ = 1,wdQ = 1, andwQ1 = 5. The termR represents regularization,

which consists of two parts: (1) an l2-norm regularization of the network’s parameters

kqk2 and (2) a smoothing term kdQ=dck2 to avoid large, unphysical performance

fluctuations (c denotes the fractional concentration of elements). The weight of reg-

ularization is 10� 4.

To make predictions, an ensemble of five independent models was trained to make

predictions. Each model was trained with a batch size of 1,024 within 30 epochs. The

Adam optimizer was used with 10� 3 as the initial learning rate. The ExponentialLR

scheduler was used to adjust the learning rate with a decay rate of 0.9 per epoch.
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